Name:_____

Data	•	
Date		

SOLUTION for Pre-Calculus 11 HW 4.5 Discriminant Nature of the Roots $D = b^2 - 4ac$

1. Determine the nature of the roots [ie: Determine how many x-intercepts each quadratic equation has]

a) $x^2 + 5x + 6 = 0$	b) $12x^2 + 7x - 3 = 0$	c) $-2x^2 - 7x + 5 = 0$
To find the nature of the roots, just use the discriminant formula: $D = b^2 - 4ac$ D = 25 - 4(1)(6) D = 1 There are two distinct real roots	$D = b^{2} - 4ac$ D = 49 - 4(12)(-3) D = 49 + 144 = 193 > 0 There are two distinct real roots	$D = b^{2} - 4ac$ D = 49 - 4(-2)(5) D = 89 > 0 There are two distinct roots
d) $4x^2 = 13x - 8$	e) $x(7-8x) = 10$	f) $x(x+2) = 6 - (x-3)(2x+1)$
$4x^{2} - 13x + 8 = 0$ $D = b^{2} - 4ac$ D = 169 - 4(4)(8) D = 41 > 0	$7x - 8x^{2} = 10$ $0 = 8x^{2} - 7x + 10$ $D = b^{2} - 4ac$ D = 49 - 4(8)(10) D = -271 < 0 No real roots	$x^{2} + 2x = 6 - (2x^{2} - 5x - 3)$ $x^{2} + 2x = 6 - 2x^{2} + 5x + 3$ $3x^{2} - 3x - 9 = 0$ $D = b^{2} - 4ac$ D = 9 - 4(3)(-9) D = 117 > 0 There are two distinct roots

2. Solve each of the following inequalities:

a) $x^2 < 16$	b) $x^2 - 25 > 0$	c) $x(3-x) < 0$
1 < r < 1	$x^2 > 25$	x(3-x)=0
-4 < 1 < 4	$x < -5 \ or \ 5 < x$	x = 0, x = 3
		x(3-x) < 0
		x < 0 or 3 < x

3. Determine the value of "k" so that the equation has two equal roots:

a) $x^2 + kx + 25 = 0$	b) $kx^2 + 4x + 1 = 0$	c) $0.5x^2 + 3kx + (3k - 4) = 0$
To have two equal roots, the discriminant must be equal to zero. $D = b^{2} - 4ac$ $k^{2} - 4(1)(25) = 0$ $k^{2} = 100$ $k = \pm 10$	$D = b^{2} - 4ac$ $16 - 4(k)(1) = 0$ $16 = 4k$ $4 = k$	$D = b^{2} - 4ac$ $(3k)^{2} - 4(0.5)(3k - 4) = 0$ $9k^{2} - 2(3k - 4) = 0$ $9k^{2} - 6k + 8 = 0$ $(3k - 4)(3k + 2) = 0$ $k = \frac{4}{3} \text{ or } k = \frac{-2}{3}$

4. Determine the value of "k" so that the equation has two different roots:

a) $x^2 - kx + 12 = 0$	b) $kx^2 - kx + 1 = 0$	c) $x^2 - 4kx + (5k - 6) = 0$
To have two distinct roots, the discriminant must be greater than 0. $b^2 - 4ac > 0$ $k^2 - 4(12) > 0$ $k^2 - 48 > 0$ $k < -4\sqrt{3}$ or $4\sqrt{3} < k$ Draw a number line and use test points:	$b^{2} - 4ac > 0$ $k^{2} - 4(k) > 0$ k(k-4) > 0 k < 0 or $4 < k$	$b^{2} - 4ac > 0$ $(-4k)^{2} - 4(1)(5k - 6) > 0$ $16k^{2} - 20k + 24 > 0$ $4(k^{2} - 5k + 6) > 0$ 4(k - 2)(k - 3) > 0 k < -2 or 3 < k

5. Determine the value of "k" so that the equation has no real roots:

a) $x^2 - kx - 24 = 0$	b) $kx^2 - kx + 8 = 0$	c) $x^2 - 3kx - (3k - 8) = 0$
To have no real roots, the	$b^2 - 4ac < 0$	$x^2 - 3kx - 3k + 8 = 0$
discriminant must be less than 0 $b^2 - 4ac < 0$	$k^2-4(k)(8)<0$	$b^2 - 4ac < 0$
$k^2 - 4(-24) < 0$	$k^2 - 32k < 0$	$\left(-3k\right)^2 - 4\left(-3k+8\right) < 0$
$k^2 + 96 < 0$	k(k-32) < 0	$9k^2 + 12k - 32 < 0$
The left side is always positive,	0 < k < 32	(3k+8)(3k-4) < 0
because k ² is always positive. SO, no matter what "k", the equation	equation will not have any roots	$\frac{-8}{-8} < k < \frac{4}{-8}$
will always have 2 distinct roots		3 3

6. In order for a quadratic function to be factorable, what value must the discriminant be equal to? Explain:

This is the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. In order for a quadratic equation to be factorable, both roots must be either an integer or a fraction. Can't have a radical. So that means the discriminant $b^2 - 4ac$ needs to be

If the quadratic equation $(x-2)^2 + k = 0$ has two distinct real roots, then what is the range of "k"? (Multiple choice, circle one) Justify your answer.

a) k > 2 b) k < 0 c) $k \le 0$ d) $k \le 4$

 $\begin{aligned} x^2 - 4x + 4 + k &= 0\\ 16 - 4(1)(4 + k) > 0\\ 16 - 4(4 + k) & \text{So as long as } k < 0, \text{ the quadratic equation will have two distinct roots}\\ 16 - 16 - 4k > 0\\ -4k > 0\\ k < 0 \end{aligned}$

either 0 or a perfect square.